o
    4BiJ                     @   s   d Z ddgZddlZddlmZ ddlmZmZmZm	Z	m
Z
mZmZmZmZmZ ddlmZmZmZmZmZ dd	lmZ dd
lmZmZ ddlmZmZ ddlmZmZ dZ eee!j"Z#dd Z$dddddddddddddde#dfddZ%dddddddde#ddfddZ&dd Z'dd Z(dS )a  
This module implements the Sequential Least Squares Programming optimization
algorithm (SLSQP), originally developed by Dieter Kraft.
See http://www.netlib.org/toms/733

Functions
---------
.. autosummary::
   :toctree: generated/

    approx_jacobian
    fmin_slsqp

approx_jacobian
fmin_slsqp    N)slsqp)
zerosarraylinalgappendconcatenatefinfosqrtvstackisfinite
atleast_1d   )OptimizeResult_check_unknown_options_prepare_scalar_function_clip_x_for_func_check_clip_x)approx_derivative)old_bound_to_new_arr_to_scalar)
atleast_ndarray_namespace)expinfzrestructuredtext enc                 G   s   t || d||d}t|S )a  
    Approximate the Jacobian matrix of a callable function.

    Parameters
    ----------
    x : array_like
        The state vector at which to compute the Jacobian matrix.
    func : callable f(x,*args)
        The vector-valued function.
    epsilon : float
        The perturbation used to determine the partial derivatives.
    args : sequence
        Additional arguments passed to func.

    Returns
    -------
    An array of dimensions ``(lenf, lenx)`` where ``lenf`` is the length
    of the outputs of `func`, and ``lenx`` is the number of elements in
    `x`.

    Notes
    -----
    The approximation is done using forward differences.

    2-point)methodabs_stepargs)r   np
atleast_2d)xfuncepsilonr   jac r&   X/var/www/html/Trade-python/venv/lib/python3.10/site-packages/scipy/optimize/_slsqp_py.pyr   &   s   

r&   d   gư>c                    s   |dur|}||||dk||d}d}|t  fdd|D 7 }|t  fdd|D 7 }|r9|d|| d	f7 }|rE|d
||	 d	f7 }t| | f|||d|}|rf|d |d |d |d |d fS |d S )a/  
    Minimize a function using Sequential Least Squares Programming

    Python interface function for the SLSQP Optimization subroutine
    originally implemented by Dieter Kraft.

    Parameters
    ----------
    func : callable f(x,*args)
        Objective function.  Must return a scalar.
    x0 : 1-D ndarray of float
        Initial guess for the independent variable(s).
    eqcons : list, optional
        A list of functions of length n such that
        eqcons[j](x,*args) == 0.0 in a successfully optimized
        problem.
    f_eqcons : callable f(x,*args), optional
        Returns a 1-D array in which each element must equal 0.0 in a
        successfully optimized problem. If f_eqcons is specified,
        eqcons is ignored.
    ieqcons : list, optional
        A list of functions of length n such that
        ieqcons[j](x,*args) >= 0.0 in a successfully optimized
        problem.
    f_ieqcons : callable f(x,*args), optional
        Returns a 1-D ndarray in which each element must be greater or
        equal to 0.0 in a successfully optimized problem. If
        f_ieqcons is specified, ieqcons is ignored.
    bounds : list, optional
        A list of tuples specifying the lower and upper bound
        for each independent variable [(xl0, xu0),(xl1, xu1),...]
        Infinite values will be interpreted as large floating values.
    fprime : callable `f(x,*args)`, optional
        A function that evaluates the partial derivatives of func.
    fprime_eqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of equality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_eqcons should be sized as ( len(eqcons), len(x0) ).
    fprime_ieqcons : callable `f(x,*args)`, optional
        A function of the form `f(x, *args)` that returns the m by n
        array of inequality constraint normals. If not provided,
        the normals will be approximated. The array returned by
        fprime_ieqcons should be sized as ( len(ieqcons), len(x0) ).
    args : sequence, optional
        Additional arguments passed to func and fprime.
    iter : int, optional
        The maximum number of iterations.
    acc : float, optional
        Requested accuracy.
    iprint : int, optional
        The verbosity of fmin_slsqp :

        * iprint <= 0 : Silent operation
        * iprint == 1 : Print summary upon completion (default)
        * iprint >= 2 : Print status of each iterate and summary
    disp : int, optional
        Overrides the iprint interface (preferred).
    full_output : bool, optional
        If False, return only the minimizer of func (default).
        Otherwise, output final objective function and summary
        information.
    epsilon : float, optional
        The step size for finite-difference derivative estimates.
    callback : callable, optional
        Called after each iteration, as ``callback(x)``, where ``x`` is the
        current parameter vector.

    Returns
    -------
    out : ndarray of float
        The final minimizer of func.
    fx : ndarray of float, if full_output is true
        The final value of the objective function.
    its : int, if full_output is true
        The number of iterations.
    imode : int, if full_output is true
        The exit mode from the optimizer (see below).
    smode : string, if full_output is true
        Message describing the exit mode from the optimizer.

    See also
    --------
    minimize: Interface to minimization algorithms for multivariate
        functions. See the 'SLSQP' `method` in particular.

    Notes
    -----
    Exit modes are defined as follows ::

        -1 : Gradient evaluation required (g & a)
         0 : Optimization terminated successfully
         1 : Function evaluation required (f & c)
         2 : More equality constraints than independent variables
         3 : More than 3*n iterations in LSQ subproblem
         4 : Inequality constraints incompatible
         5 : Singular matrix E in LSQ subproblem
         6 : Singular matrix C in LSQ subproblem
         7 : Rank-deficient equality constraint subproblem HFTI
         8 : Positive directional derivative for linesearch
         9 : Iteration limit reached

    Examples
    --------
    Examples are given :ref:`in the tutorial <tutorial-sqlsp>`.

    Nr   )maxiterftoliprintdispepscallbackr&   c                 3       | ]	}d | dV  qdS )eqtypefunr   Nr&   .0cr   r&   r'   	<genexpr>       zfmin_slsqp.<locals>.<genexpr>c                 3   r/   )ineqr1   Nr&   r4   r7   r&   r'   r8      r9   r0   )r2   r3   r%   r   r:   )r%   boundsconstraintsr"   r3   nitstatusmessage)tuple_minimize_slsqp)r#   x0eqconsf_eqconsieqcons	f_ieqconsr;   fprimefprime_eqconsfprime_ieqconsr   iteraccr+   r,   full_outputr$   r.   optsconsresr&   r7   r'   r   H   s8   p

"Fc           E         sH  t | |d }|}|
 |	sd}t|}t|d|d}|j}||jdr(|j}||||d|du s<t|dkrDt	j
 t	j
fnt|t	d d t|tr[|f}ddd}t|D ]\}}z|d	  }W n3 ty } ztd
| |d}~w ty } ztd|d}~w ty } ztd|d}~ww |dvrtd|d	  d|vrtd| |d}|du r҇ fdd}||d }||  |d ||dddf7  < qddddddddddddd }tttfd!d"|d# D }tttfd$d"|d% D }|| }td|g }t}|d }|| | | } d&| | |d  || d | d'   d'|   ||  ||   d'|  | |d | d'  d'|  d&|  d&|  d }!| }"t|!}#t|"}$|du st|dkrt	j|td(}%t	j|td(}&|%t	j |&t	j n|td)d" |D t}'|'jd |krt d*t	j!d+d, |'dddf |'dddf k}(W d   n	1 sw   Y  |(" rtd-d.#d/d0 |(D  |'dddf |'dddf }%}&t$|' })t	j|%|)dddf < t	j|&|)dddf < t%| ||
d1}*t&|*j'}+t&|*j(},tdt)}-t|t}t|t)}.d}/tdt}0tdt}1tdt}2tdt}3tdt}4tdt}5tdt}6tdt}7tdt}8tdt}9tdt)}:tdt)};tdt)}<tdt)}=tdt)}>tdt)}tdt)}?tdt)}@|d'krt*d2d3  |+}At+|,d4}Bt,|}Ct-||||||}D	 t.g |||%|&|A|C|B|D||.|-|#|$|0|1|2|3|4|5|6|7|8|9|:|;|<|=|>||?|@R   |-dkr|+}At,|}C|-dkr*t+|,d4}Bt-||||||}D|.|/krN|dur;|t	/ |d'krNt*d5|.|*j0|At12|Bf  t3|-dkrVnt)|.}/q|dkrt*|t)|- d6 t4|- d7  t*d8|A t*d9|. t*d:|*j0 t*d;|*j5 t6|A|Bdd t)|.|*j0|*j5t)|-|t)|- |-dkd<	S )=a  
    Minimize a scalar function of one or more variables using Sequential
    Least Squares Programming (SLSQP).

    Options
    -------
    ftol : float
        Precision goal for the value of f in the stopping criterion.
    eps : float
        Step size used for numerical approximation of the Jacobian.
    disp : bool
        Set to True to print convergence messages. If False,
        `verbosity` is ignored and set to 0.
    maxiter : int
        Maximum number of iterations.
    finite_diff_rel_step : None or array_like, optional
        If `jac in ['2-point', '3-point', 'cs']` the relative step size to
        use for numerical approximation of `jac`. The absolute step
        size is computed as ``h = rel_step * sign(x) * max(1, abs(x))``,
        possibly adjusted to fit into the bounds. For ``method='3-point'``
        the sign of `h` is ignored. If None (default) then step is selected
        automatically.
    r   r   )ndimxpzreal floatingNr&   )r0   r:   r2   z"Constraint %d has no type defined.z/Constraints must be defined using a dictionary.z#Constraint's type must be a string.zUnknown constraint type '%s'.r3   z&Constraint %d has no function defined.r%   c                    s    fdd}|S )Nc                    s:   t | } dv rt| |dS t| d |dS )N)r   z3-pointcs)r   r   rel_stepr;   r   )r   r   r   r;   )r   r   )r"   r   )r$   finite_diff_rel_stepr3   r%   
new_boundsr&   r'   cjac.  s   

z3_minimize_slsqp.<locals>.cjac_factory.<locals>.cjacr&   )r3   rW   )r$   rU   r%   rV   )r3   r'   cjac_factory-  s   z%_minimize_slsqp.<locals>.cjac_factoryr   )r3   r%   r   z$Gradient evaluation required (g & a)z$Optimization terminated successfullyz$Function evaluation required (f & c)z4More equality constraints than independent variablesz*More than 3*n iterations in LSQ subproblemz#Inequality constraints incompatiblez#Singular matrix E in LSQ subproblemz#Singular matrix C in LSQ subproblemz2Rank-deficient equality constraint subproblem HFTIz.Positive directional derivative for linesearchzIteration limit reached)rR   r   r                        	   c                    (   g | ]}t |d   g|d R  qS r3   r   r   r4   r"   r&   r'   
<listcomp>P       z#_minimize_slsqp.<locals>.<listcomp>r0   c                    ra   rb   rc   r4   rd   r&   r'   re   R  rf   r:   rZ   rY   )dtypec                 S   s    g | ]\}}t |t |fqS r&   )r   )r5   lur&   r&   r'   re   k  s    zDSLSQP Error: the length of bounds is not compatible with that of x0.ignore)invalidz"SLSQP Error: lb > ub in bounds %s.z, c                 s   s    | ]}t |V  qd S )N)str)r5   br&   r&   r'   r8   v  s    z"_minimize_slsqp.<locals>.<genexpr>)r%   r   r$   rU   r;   z%5s %5s %16s %16s)NITFCOBJFUNGNORMg        z%5i %5i % 16.6E % 16.6Ez    (Exit mode )z#            Current function value:z            Iterations:z!            Function evaluations:z!            Gradient evaluations:)	r"   r3   r%   r=   nfevnjevr>   r?   success)7r   r   r   float64isdtyperg   reshapeastypelenr    r   r   clip
isinstancedict	enumeratelowerKeyError	TypeErrorAttributeError
ValueErrorgetsummapr   maxr   emptyfloatfillnanshape
IndexErrorerrstateanyjoinr   r   r   r3   gradintprintr   _eval_constraint_eval_con_normalsr   copyrs   r   normabsrl   ngevr   )Er#   rB   r   r%   r;   r<   r)   r*   r+   r,   r-   r.   rU   unknown_optionsrJ   rK   rQ   rg   rN   icconctypeerW   rX   
exit_modesmeqmieqmlann1mineqlen_wlen_jwwjwxlxubndsbnderrinfbndsfwrapped_funwrapped_gradmodemajitermajiter_prevalphaf0gsh1h2h3h4tt0toliexactinconsiresetitermxlinen2n3fxgr6   ar&   )r$   rU   r%   rV   r"   r'   rA      s  






>"
"























<








  

rA   c                    sh   |d rt  fdd|d D }ntd}|d r(t  fdd|d D }ntd}t ||f}|S )Nr0   c                    ra   rb   rc   r5   r   rd   r&   r'   re     rf   z$_eval_constraint.<locals>.<listcomp>r   r:   c                    ra   rb   rc   r   rd   r&   r'   re     rf   )r	   r   )r"   rN   c_eqc_ieqr6   r&   rd   r'   r     s   

r   c           
         s   |d rt  fdd|d D }nt||f}|d r*t  fdd|d D }nt||f}|dkr;t||f}	nt ||f}	t|	t|dgfd}	|	S )Nr0   c                    $   g | ]}|d   g|d R  qS r%   r   r&   r   rd   r&   r'   re         z%_eval_con_normals.<locals>.<listcomp>r:   c                    r   r   r&   r   rd   r&   r'   re     r   r   r   )r   r   r	   )
r"   rN   r   r   r   r   r   a_eqa_ieqr   r&   rd   r'   r     s   

r   ))__doc____all__numpyr    scipy.optimize._slsqpr   r   r   r   r   r	   r
   r   r   r   r   	_optimizer   r   r   r   r   _numdiffr   _constraintsr   r   scipy._lib._array_apir   r   r   r   __docformat__r   r-   _epsilonr   r   rA   r   r   r&   r&   r&   r'   <module>   s:    0"
 
  